(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(h(x3_0), y) →+ h(f(x3_0, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x3_0 / h(x3_0)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))

S is empty.
Rewrite Strategy: FULL

(5) SlicingProof (LOWER BOUND(ID) transformation)

Sliced the following arguments:
f/1
g/1

(6) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

S is empty.
Rewrite Strategy: FULL

(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(8) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

(9) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
f, g

They will be analysed ascendingly in the following order:
f = g

(10) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))

The following defined symbols remain to be analysed:
g, f

They will be analysed ascendingly in the following order:
f = g

(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Induction Base:
g(gen_h2_0(+(1, 0)))

Induction Step:
g(gen_h2_0(+(1, +(n4_0, 1)))) →RΩ(1)
h(g(gen_h2_0(+(1, n4_0)))) →IH
h(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(12) Complex Obligation (BEST)

(13) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))

The following defined symbols remain to be analysed:
f

They will be analysed ascendingly in the following order:
f = g

(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)

Induction Base:
f(gen_h2_0(0))

Induction Step:
f(gen_h2_0(+(n185_0, 1))) →RΩ(1)
g(gen_h2_0(+(n185_0, 1))) →RΩ(1)
h(f(gen_h2_0(n185_0))) →IH
h(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(15) Complex Obligation (BEST)

(16) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)

Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))

The following defined symbols remain to be analysed:
g

They will be analysed ascendingly in the following order:
f = g

(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)

Induction Base:
g(gen_h2_0(+(1, 0)))

Induction Step:
g(gen_h2_0(+(1, +(n432_0, 1)))) →RΩ(1)
h(g(gen_h2_0(+(1, n432_0)))) →IH
h(*3_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(18) Complex Obligation (BEST)

(19) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

Lemmas:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)

Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))

No more defined symbols left to analyse.

(20) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)

(21) BOUNDS(n^1, INF)

(22) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

Lemmas:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)

Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))

No more defined symbols left to analyse.

(23) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)

(24) BOUNDS(n^1, INF)

(25) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)

Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))

No more defined symbols left to analyse.

(26) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(27) BOUNDS(n^1, INF)

(28) Obligation:

TRS:
Rules:
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))

Types:
f :: h → h
g :: h → h
h :: h → h
hole_h1_0 :: h
gen_h2_0 :: Nat → h

Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))

No more defined symbols left to analyse.

(29) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)

(30) BOUNDS(n^1, INF)