0 CpxTRS
↳1 DecreasingLoopProof (⇔, 291 ms)
↳2 BOUNDS(n^1, INF)
↳3 RenamingProof (⇔, 0 ms)
↳4 CpxRelTRS
↳5 SlicingProof (LOWER BOUND(ID), 0 ms)
↳6 CpxRelTRS
↳7 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 typed CpxTrs
↳9 OrderProof (LOWER BOUND(ID), 0 ms)
↳10 typed CpxTrs
↳11 RewriteLemmaProof (LOWER BOUND(ID), 385 ms)
↳12 BEST
↳13 typed CpxTrs
↳14 RewriteLemmaProof (LOWER BOUND(ID), 173 ms)
↳15 BEST
↳16 typed CpxTrs
↳17 RewriteLemmaProof (LOWER BOUND(ID), 81 ms)
↳18 BEST
↳19 typed CpxTrs
↳20 LowerBoundsProof (⇔, 0 ms)
↳21 BOUNDS(n^1, INF)
↳22 typed CpxTrs
↳23 LowerBoundsProof (⇔, 0 ms)
↳24 BOUNDS(n^1, INF)
↳25 typed CpxTrs
↳26 LowerBoundsProof (⇔, 0 ms)
↳27 BOUNDS(n^1, INF)
↳28 typed CpxTrs
↳29 LowerBoundsProof (⇔, 0 ms)
↳30 BOUNDS(n^1, INF)
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
f(x, y) → g(x, y)
g(h(x), y) → h(f(x, y))
g(h(x), y) → h(g(x, y))
f(x) → g(x)
g(h(x)) → h(f(x))
g(h(x)) → h(g(x))
They will be analysed ascendingly in the following order:
f = g
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
The following defined symbols remain to be analysed:
g, f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_h2_0(+(1, 0)))
Induction Step:
g(gen_h2_0(+(1, +(n4_0, 1)))) →RΩ(1)
h(g(gen_h2_0(+(1, n4_0)))) →IH
h(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
The following defined symbols remain to be analysed:
f
They will be analysed ascendingly in the following order:
f = g
Induction Base:
f(gen_h2_0(0))
Induction Step:
f(gen_h2_0(+(n185_0, 1))) →RΩ(1)
g(gen_h2_0(+(n185_0, 1))) →RΩ(1)
h(f(gen_h2_0(n185_0))) →IH
h(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
The following defined symbols remain to be analysed:
g
They will be analysed ascendingly in the following order:
f = g
Induction Base:
g(gen_h2_0(+(1, 0)))
Induction Step:
g(gen_h2_0(+(1, +(n432_0, 1)))) →RΩ(1)
h(g(gen_h2_0(+(1, n432_0)))) →IH
h(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
Lemmas:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_h2_0(+(1, n432_0))) → *3_0, rt ∈ Ω(n4320)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
f(gen_h2_0(n185_0)) → *3_0, rt ∈ Ω(n1850)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.
Lemmas:
g(gen_h2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_h2_0(0) ⇔ hole_h1_0
gen_h2_0(+(x, 1)) ⇔ h(gen_h2_0(x))
No more defined symbols left to analyse.